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Celestial mechanics can be defined as the branch of astronomy which

describes mathematically the motions of celestial bodies. It started

with the discovery of the law of universal gravitation by Sir Isaac"

Newton and with the publication of his Principia (1687).

Two-body Problem

' Using Newton's expression for the force of attraction between two

bodies

the problem of the determination of the heliocentric position vector of

m
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a planet_ or of a comet 3 with the mass m relative to the sun_ having the

mass _M, can be reduced to the integration of the differential equation

of two body problem:

The integration of this equation shows that the trajectory is a conic
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section situated in a fixed plane. The integrals of Eq. (I) contain six

independent constants of integration - the elements of the motion. They

are: the mean anomaly at the epoch - No, the argument of the perihelion en

, the inclination of the_O _ the longitude of the ascending node
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orbital plane i, the eccentricity e, and the semimajor axis a of

the orbit (or the mean daily motion - n). Sometimes the angle_J_ _

the longitude of the perigee, is used instead of_and the mean

longitude at the epochL=_*_is used instead of M. For computation-

al reasons it is more convenient to introduce the unit vector P

directed toward the perigee and R, the unit vector normal to the

orbital plane, instead of _, D, i. The theory of the two-body

problem can also be based upon two vectorial integrals: the

area integral

and the Laplacian integral

The position vector in the planetary motion can be expressed in

one of two forms:

where v is the angle between r and P. It is the true anomaly.

The angle E is called the eccentric anomaly.

To the last equation must be added the classical Keplerr s

integral : •

_ _ _ _ _ e _ _ _&-- _o) is the mean anomaly.

Many-body Problem

The two-body problem can serve, however, only as a first

approximation. In the planetary system, consisting of bodies with the

|
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masses_ and with the-_position vectors _& £_,_,-.. _) the motion

is not governed by Eq. (i) but 3 because of the mutual attraction of

bodies, by more complicated equations:

which can be written in the form

(3)

where

(4)

. __ _ _.. a._)

and it is called the disturbing function of the _-_ planet.

case of only two _ it is customary to w@ite Eq. (4) and (5) as

(5)

In the

whe re

I

(6)

(7)

The body with the mass m and the position vector r is termed as

"disturbed" and the body with the mass _-_ and the position vector )_
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is termed as "disturbing". The differential Eq. (6) together with the

!
corresponding equation for the body _,_ defines the celebrated three-

body problem. The closed form complete solution of this problem

found. If equations of motion are given relative to an inertial

system_ then the classical scalar integrals do exist. In the vectorial

form, these integrals are: the integrals of motion of the centers of

masses

A.
, &'t:

which says that the center of masses moves rectilinearlywith the

constant velocity_-_e area integral

-aP

and the integral of energy

These integrals can be used for the purpose of the reduction of the

three-body problem to lesser degrees of freedom (from 18 to 12_ then to

8, finally to 6), but any attempt to find any new integrals failed.

H. Bruns (1887) has shown that any integral algebraic in the coordinates

I
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and the velocities must be an algebraic combination of ten classical

integrals. This important result was extended by H. Poincar_ (1892),

who has shown that any integral represented by a uniform and transcendental

function of the coordinates and the velocities is again a combination of
J

ten classical integrals. Finally, Painlev_ (1898) has shown that the

integrals which are algebraic in velocities only and different from the

ten known integrals cannot exist. Thus the unknown integrals in the three-

body problem must be multivalued and transcendental function_. It is no

surprise that they have not been found.

Planetary Theories

If the system consists of the sun and only one planet_ then the

planet moves around the sun in an ellipse of constant shape and position.

The elements of this ellipse can be deduced from the position and the

velocity vector of the planet at any particular moment.

In the planetary system, the motion of each planet is disturbed by

the attraction of the other members of the system_and its trajectory is

no longer an ellipse of constant shape. The position and the velocity

vector at a given moment define only an instantaneous 3 osculating_

ellipse and the real motion of the planet can be understood as a

continuous set of transitions from one osculating ellipse to the other.

If the disturbing action of other planets would suddenly disappear_

the planet would continue to move in its osculating ellipse. The

dependence of theposition and of the velocity vectors upon time and
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upon the elements _% (i_,_-, .... &) of the osculating ellipse must be

the same as in the two-body problem. In other words_ if the position

and the velocity of the planet are

-_ _ (_ _, ...._),)L _ • j _2., ,

then we must have

-ab -a_

where

6_ _ C __

Let'us first consider the case of only two planets. Let us designate

their masses by m and l _ _ '_ , their position vectors by r and r and the

-*8

velocity vectors by v and v , respectively. The differential equation

of the heliocentric disturbed motion of the planet m is

_-_-_. --- _., _
(io)

whe re

= \ _'-_\
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The second term in Eq. (i0) represents the disturbing acceleration. It

consists of two terms. The first term has as its source the direct

attraction of m by m' . The second, "indirect_" term is a "reflection"

of motion of m' around the sun. Its presence is caused by the transformation

from the inertial system of coordinates to the system of coordinates

associated with the sun.

Introducing the "disturbing function"

we can write Eq. (lO) as

(12)

In the case of several disturbing planets, the disturbing functions of

the _-_ planet is

where the sum is taken over all the disturbing planets and the

differential equation of motion of the 4-_ planet takes the form

(13)
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and Eqs. (8) and (9) we obtain the conditions of the osculation in the

form

&

L

_ &_ _c k

From these two equations we obtain

whe re

are the Lagrangian brackets. In the Eq. (14) is contained all the

theory of osculation. From _ _/_erential equations for the

variations of the osculating elements in time can be deduced. J.L.

Lagrange (173g-1815) has obtained the following differential equations
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for the variations of the classical elliptic elements:

The use of the elliptical elements is not always convenient because the

eccentricity and the inclination enter as divisors into the differential

equation• We have considerable numerical difficulties if these divisors

are small, especially in the _ase of nearly circular orbits• This

difficulty can be circumvented by employing some other sets of

elements, such as, for example, the canonical elements of Delaunay
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of Poincare:

The simplest way to determine the osculating elements as

functions of time would be to integrate the differential

equations numerically. However_ taking into account the fact

that the motions of the planets are nearly periodic, we come to

the conclusion that we can determine the perturbations by

developing them into a trigonometric series with several

arguments. Such an approach has served as a foundation for

planetary theories since the time of Laplace°

The expansion in powers of the inclination is performed first.

It requires the developments of the form

where _ is the difference of the mean longitudes of both
(*)

planets. The coefficients_ were introduced into Celestial

_chanics by Laplace and bear his name.

After the development in inclinations is done, the develop-

ment in the eccentricities is obtained in terms of Newcomb's

differential operators as applied to the Laplacian coefficients.

There are tables giving the Laplacian coefficients and their

derivatives as functions of_ m/, . At the present time, however,

the development of Newcomb's operators, the computation of

Laplacian coefficients and their derivatives is done on electronic

machines directly in each particular case. The final

decomposition of the disturbing function has the form

where the argument D is a linear combination of the angular elements



- ii -

with the coefficients which are integers, positive; negative; or zero;

I

and A is a function of a and a' of the order -I. If the canonical

elements of Poincar_ are being used, then the development of _ has the

form

where M are polynomials in the canonical elements _ and _ of both

planets. The part of R which is independent from the mean anomalies is

called the secular disturbing function. In the process of integration,

it produces the terms having time as a factor. In the first

approximation we consider the elements _, _', _h, _h', _, _e', _i, _i', or the

elements _, , _ and L of the disturbed and of the disturbing bodies as

constants and make use of the Lagrangian equations for variation of

constants. The perturbations are obtained by the integration of Fourier

series similar to Eq. (15) with the sine or cosine terms. As a result

of integration, the perturbations of the first-order in m and m' of Gach

element _, excepting a or L, have the form:

and for _ or L;
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In other words the perturbations of all the elements, excepting _a or L,

consist of secular and periodic terms. The first-order perturbations of

a or L contain the periodic terms only (the theorem of Laplace). This
F

result is significant because it give us a first approximation of the

idea about the general behavior and stability of the solar system. The

• t !

itegration of the periodic terms introduces divisors in_-_ _ where i

and i' are integers. They can be positive or negative. In the perturba-

tlons of the mean anomaly_ the integration is performed twice_ and as a

consequence_ the squares of the small divisors appear. In the case when

n and n' are nearly commensurab_ some of these divisors are very small.

The period of the corresponding term (the critical term) is very large.

The critical terms will also have large amplitudes in the expressions

for perturbations_ especially in the perturbations of the mean anomaly.

The classical examples of the long-period effects are the great inequalities

in %he mean longitudes of Jupiter_ with the amplitude of 1196", and of

Saturn_ with the amplitude of 2908". They have a period of nearly 900

years and are caused by the commensurability 5/2 of the mean motions of

these planets. These two inequalities were discovered by Laplace.

After the first approximation is completed, the higher-order

approximations, can be obtained either by developing the perturbations in

powers of the disturbing masses or by means of iteration. Each new

approximation introduces the mutual actions of more planets into the

problem_ and consequently more arguments, some of which might be the
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critical ones. It introduces also the secular terms of higher orders.

In additio_ the mixed terms_ consisting of periodic terms with some power

of time as a factor_ also appear. After the kth approximation the

general term in the planetary perturbations has the form:

where b is of the order of the disturbing masses_ the argument D is

linear with respect to time and has the form:

and N is a small divisor associated with a critical argument. For purely

periodic terms _ = 0_ for purely secular terms_\_\_'\ = 0, for mixed

terms we have _ _ 0 _r + _l I_ o. we have to distinguish between the

order, the degree_ the rank, and the class of a term. The order is the

exponent of _. If _, _ _f_ _, _T and _ are given 3 then the smaller the

order 3 the smaller the influence of the term over a given interval of

time. The degree is the sum_ + _Y + _ + _' . _ts introduction is

Justified by the smallness of the eccentricities and of the inclinations.

The rank is k - _ • The terms with the small rank can have great

i

significance even if the order is large, because the term originally

small can increase with time. The class is defined as _ -(I/2)(_ + 6).

The purely secular terms in the first approximation have the order one,

the rank zeroj and the class 1/2. The long-period terms in the first
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approximation have the order one, the rank one and the order 1/2• This

classification of terms serves as a basis for Poincar_'s deep investigations

about the analytical structure of the solutions in the planetary theory•

The important theorems about the rank are:

(i) The perturbations in the canonical elements_,_ _ and L can have

only a positive rank.

(2) The rank of the mixed terms cannot be smaller than one.

(5) The perturbations of L do not contain terms of the rank zero.

The fact that there are no terms of the negative rank in any

approximation is significant 3 because it gives a general idea about the

speed with which the secular and the mixed terms increase and about the

"danger" they represent over a long interval of time. The statement

about the absence of the terms of the zero rank in a or L can be taken as
m

an extension of the theorem of Laplace about the stability of the semi-

major axes. The terms of the rank zero are always purely secular and they

are of primary importance in all investigations concerning the behavior

of the planetary system over an extremely long interval of time 3 say of

several hundred thousand years. Next in importance over the very long

intervals of time are the terms of the class 1/2 3 which are either the

purely secular or the long periodic. Their influence on the perturbations

of higher orders is regulated by the theorem of Poincare about the class:

in the development of all perturbations there are no termsof the negative

class and in perturbations of the canonical elements &_ ,h ,_ the class

of terms cannot be smaller than 1/2.
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The presence of the secular, of the mixed and of the critical

arguments limits the interval of applicability of a planetary theory.

For our time the accuracy of the prediction can be brought into agreement

with the accuracy of observations. A somewhat lesser accuracy can be

achieved for the interval covering the historical period of mankind. An

accuracy satisfactory enough to check or to try to explain some

astronomical events in the distant past can be achieved. The theorems

about ranks and classes provide us wi_h important qualitative information

about the behavior of a planetary theory over a long interval of time.

However, this information is not of any great service in discussing the

problem of stability of the solar system as a whole. In the problem of

stability, the terms of the rank zero and of the class 1/2 are still of

primary importance; however their treatment must go along different lines

than in the standard planetary theories. We consider this problem in the

next _,_'% _ o.-.

A different approach to the planetary theory was taken by Hansen.

Hansen's basic idea consists of the introduction of,fictitious planet_

moving in accordance with Kepler's laws in an ellipse of the constant

shape located in the osculating orbit plane. The position of the real

planet is determined by its deviation from the position of the fictitious

-@

planet in time and space. The position vectors r of the real planet at

the time t and the position vector _ of the fictitious planet at the time

have the same directions and we can set

¢_
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and in particular

The quantities _ _ and _ _ 3- at are interpreted as the perturbations

of the radius vector and of time. If the mean motion of the fictitious
i
!

planet is designated by no, then its mean anomaly is

g_ describes the angular deviation of the real planet from the

I

fictitious planet. All the angular perturbations in the orbital plane

are combined into one angle _Q %_ the perturbations of the mean

anomaly. The main charm of Hansen's theory is that _ and _o _ can be

determined by means of one single function W. The effect of the change

of the position of the osculating orbit plane is also taken into account.

The orbit plane considered as a rigid body 3 rotates around the

instantaneous axis of rotation, whose direction coincides with the

..@

position vector r of the real planet. This rotation is caused by the

component of the disturbing force normal to the osculating orbit plane

and its main perturbative effect is the elevation of the satellite above

the initial position of the orbital plane. The method of solution is one

of successive approximations. Hansen applied his method to the determination

of the perturbations of minor planets and to the development of the theory

of Jupiter and Saturn. Later Hill developed the theories of Jupiter and

of Saturn using the same principle. Recently, Clemence developed a

highly accurate Hansen-type theory of Mars.
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In the actual computation of ephemerides we need not so much the

osculating elements as the disturbed coordinates. Such a direct approach

to determination of the perturbations was taken by Laplace_ Newcomb,

Hansen and Encke_ and recent times by Brouwer_ Davis, Danby_ Musen and

Carpenter. In the method of Laplace_ as modified by Newcomb_ the

perturbations of the log r and of the true orbital longitude of the

planet are determined. The instantaneous position of the orbital plane

is determined by the perturbations of i and _. After these perturbations

are found_ the determination of the disturbed polar heliocentric

coordinates does not present any difficulty.

In the theories of four inner planets 3 Newcomb made use also of his

method of expansion of the disturbing function in terms of symbolic

differential operators. Recently Sharaf has applied the method of

Laplace-Newcomb to the development of the theory of Pluto.

A new approach to the problem was recently made by Brouwer_ who

developed the theory of the perturbations in the rectangular coordinates.

Let _ , %_t , be the deviations of the position vectors from their

undisturbed elliptic values, r and r' respeetively;_satifies the

differential equation of the form
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where _ is the modified "disturbing acceleration". The undisturbed

position vector is the function of time and of six elements:

... _& . For_F = 0 the solution of Eq. (16) is

Brouwer makes use of the canonical elements and obtains_for _ / 0 by the

method of variation of constants. Instead of canonical elements any type

of elements can be considered and in the actual computations the elliptic

elements are even preferable, as it was shown by Davis. The determination

of 6r and 6r' in effect can be reduced to the solution of the integral

equations of the form

by the method of successive approximation. Hansen's device was used by

Brouwer; in other words, after an approximation is completed time -c is

replaced by _.. Numerical harmonic analysis can be used for the

decomposition of _ into Fourier series. The form of the matrix F was

determined by Davis. We present here the idea of Brouwer's method with

slight changes in notation_ by resorting to the terminology of matrix and
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vector calculus. Danby developed a different form of the theory based on

the use of the matrizant. Musen and Carpenter used the decomposition of

r _@ ..p .._8_ along r, _v, and_R and write

and fom the differential equations for the determination of _, B, and

C. We can write

_ c_ 4 __, _' _-_"_' ) = _,_' ¢.__. C_7)

where _ and _Y are the gradient operators with respect to r and r'.

Setting

_._'--_ q_ . _* .....

_-_' _,-_' -,,•4- _.m. _, ..._---.

where _, _'_' are of the k-order with respect to planetary masses.

We can decompose the Taylor displacement operator in the right side of

Eq. (17) into a series of operators of Faa de Bruno which are polynomials

P

-_ _ _-_ (_=_,_ ......).With the help of these operators we deduce thein _ _.

decompositio n

-_ -_,)_ ......
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and reduce the problem to the integration Of a set of the differential

equations determining the terms of different orders in A, B, C.

Secular Perturbations

Laplace's theorem states that the semimajor axis does not have any

secular perturbations of the first order. Poisso_has proved that the

second-order perturbations do not introduce any secular effects, but that

the mixed terms will appear. Haretu has proved that in the third

approximation there is a very small secular term of the second rank. Can

some conclusion be made about the instability of the solar system in

general? Any definite statement on this subject would be too hasty. The

appearance of this secular term could probably be ascribed rather to the

imperfection of the planetary theories_under any circumstances, the

secular term will not have any appreciable influence for several millions

of years. The secular terms in other elements, _e, &-_ _ have a

greater influence on the behavior of the planetary system over a interval

of time, say_ of the order of 2 x 106 years. In_inearized form, the

differential equations for the secular perturbations led Lagrange to the

trigonometrical form of solution, constituting the combination of the

%
periodic terms with periods lying between w7 x _ o and 2 x l0 s years.

The form of integrals and of the periods in higher approximation w_

indicated in the works of Poincar_ and Hagihara. However, the appearance

of extremely small divisors in higher approximations causes considerable

numerical difficulties in application of higher orders of theory. On the
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basis of the linearized differential equations for the secular

perturbations, Hirayama and Brouwer discovered families of minor

planets. The membersof each family, according to Hirayama, have the _o-_--_

origin and represent the fragments of one body. The secular effects

play a primary role in the evolution of the planetary orbits and of the

eccentric orbits of the artificial satellite. Wecan predict the

planetary effects, but we are not able to observe their full effects

because their periods are too large.

In the motion of the artificial satellites we can observe these effects

directly. They are caused by the action of the moon. The effective way

of determining the secular perturbations of the eccentric orbits is

based on the method of Gauss. Gauss removedthe short-period effects from

the disturbing function by the process of averaging over the orbits of

both bodies. Sets of formulas were developed by several mathematicians

to perform this averaging numerically. The investigations, by covering

the intervals of 2 x 105 y_ars, showthat the periodic oscillations in

the elements of minor planets are not extremely large, but there are very
o_

large changes in the elements of artificial satellites moving%/in the

eccentric orbits. The eccentricity, for example, can oscillate between

0.2 and 0.9. Lidov recently made investigations using a different

approach. Hamid also came to the same conclusions. Gaussian method cannot

be used over the interval of_2 x l0 s years to investigate the behavior

of the planetary orbit_ and it cannot be used in the case of cometary
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orbit over the intervals of the order of i x 104 to 2 x 104 years. For

the artificial satellites the upper limit seemsto be about 20 years.

All these estimates of the intervals of the validity of the Gaussian

theory are rather conservative_ but all attempts to extend the

applicability of the existing methods of celestial mechanics to the

intervals comparable to the time of existence of the planetary system

can be considered as futile. For such intervals of time, the perturbations

of the rank zero definitely are insufficient.
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Theories of Lunar Motion

The modern theories of the moon are obtained by the development of

the perturbations of the coordinates or of the elements into multiple

Fourier series. If all known effects are taken into account 3 then the

arguments in these series are the power series with respect to time. If

only the solar gravitational effects are considered and; in addition;

the motion of the sun is taken to be elliptic; then the arguments become

the linear functions of time. We can obtain the solution of the lunar

problem in the form of the periodic series because the small divisors in

]
the lunar case are much less troublesome than in the planetary case and

in the process of integration no excessively big terms are produced.

The mathematical investigations in the lunar theory started with

the publication of Newton's Principia (1687). Newton was able to

explain all the periodic inequalities in the motion of the moon which were

known in his time from observations, as well as the secular advancement

of the lunar perigee and the regression of the node due to the gravitational

action of the sun. He also pointed to the existence of some periodic

inequalities in the motion of the moon which were not known previously.

The geometrical form into which Newton puts his results makes the

reading very difficult; however; from the standpoint of the modern

re ade r.

It seems Clairaut (1765) was the first who made an attempt to

create an analytical theory of the moon. He established the differential

equations of the motion of the moon with the true longitude as the



- 24 -

independent variable. The method of solution is based on the application

of successive approximations. The first approximation to the trajectory

of the moonis a rotating ellipse. In applying this approximation,

Clairaut found that the theoretical value of the motion of the perigee

represents only a half of the observed value. As a remedy, Clairaut

madean attempt to improve the law of gravitation by adding a term

proportional to the inverse cube Of the distance. However, after the

completion of the second approximation he deduced for the motion of the

perigee a value more accurate and in.better agreementwith the value

observed. D'Alembert (1768, 1773) addedmore periodic terms and, more

important, established that each argument in the periodic series of the

lunar theory is a linear combination with the integral coefficients of

the four basic arguments.

In the modern lunar theory_ the basic arguments are designated by

i_ I' F_ and D_where i is the meananomaly of the moon_i' the meananomaly

of the sun, F the meanangular distance of the moonfrom the ascending

node of its orbit and D the meanangular distance of the moonfrom the

The next important step was done by Euler. He has developed two

lunar theories. His second theory (1772) is especially important because

its basic idea, the use of the rotating system of coordinates_ lies in

the foundation of the modern lunar theory by Hill and Brown.
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Euler guessed correctly the analytical form of the solution, but he

made an error in using the observed values of the motions of the node and

of the perigee, instead of deducing them theoretically. As a result,

the coefficients in the series representing the solution are distorted.

Three lunar theories are holding the field at the present time:

those of Delaunay, Hansen and Hill-Brown. The foundation of the theory

of Delaunay is the variations of constants in the canonical form. The

expressions of Delaunay canonical variables _, G, H, _, g, h, in terms

of the osculating elliptic elements are

o.'_, o'_,,_'_ '

_--_ _aL_-_ _) _'_
)

c\%)

where _ = f (M + E), f is the gravitational constant, E the mass of the

earth, M the mass of the moon. The equations of motion are:

)

&4= a.--E
(21)

being the original disturbing function and it is developable into a

trigonometric series in arguments 13 i'_ _ , _, and _ with the coefficients
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depending upon L, G, and H. By a chain of properly chosen canonical

transformations, Delaunay removes the short periodic terms from R, one

by one, starting with the terms of the lower order until all the significant

short periodic terms are removed and only the secular term is left. In

going from one canonical transformation to the other, Delaunay retains

for the canonical variables the same notations L, G, H, I, g, h,

throughout. However, the meaning of these notations is moving away,

more and more, after each canonical transformation, from their original

meaning as given by the Eq. (18) and (19). After short period the

arg_ents are eliminated from R_ a=_ Eq. (20) become

and, consequently, the final L, G and H become the constants of

integration. They serve to define the mean values of the elements e, i

and a. It follows from Eq. (21) that the final i, g, and h are the

linear functions of time

±
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where _o, go and _o are the constants of integration defining the

original phases.

The final outcome of the theory of Delaunay are the trigonometrical

series for the true longitude V, the latitude , and the paralax

in terms of the four arguments of the forms:

f t P

= half,mast of the variation,

= _ a_. of the principal elliptical term

• I o- "= arg. of the "annual mnequa l_y

= mean_;of the latitude,

the mean longitude of the moon, _ is the mean

longitude of the perigee, and _ the mean longitude of the node at t =

0 o_

I

are the mean position of the perigee and of the node, % is the mean

_F

longitude of the sun and_-the longitude of the perigee at t = 0. The

series for _, _, and _/_r have the form

where _, B, and _C are the numerical coefficients; 2, _', _, £, and _s are

non-negative integers; _, j, j', and k are integers which can take
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values from - _ to + _; e is the mean eccentricity of the lunar orbit;

V = sin & where i is the mean inclination of the lunar orbit plane
_

toward the orbit plane of the sun; _ = a/a' is the parallactic factor

and m = n'/n where n and n' are the observed mean sidereal motions of the

moon and of the sun, respectively. The actual development was carried out
!

up to the seventh order with respect to the small parameters. In the

case of the moon, the series for_the longitude_ and _ , the latitude_

contains more than 400 terms and the series for a/r contains about I00

terms.

Delaunay performed more than 600 canonical transformations until he

achieved the elimination of all significant short periodic terms. It

took him about twenty years to accomplish this work. One can only admire

his persistence and courage in undertaking such a formidable task and in

bringing it to a successful completion. The series for V, U, and a/r

represent the most complete algebraic solution of the satellite problem

ever acheived.

The theory of Delaunay was applied to the VI, VII, and X satellites

of Jupiter and recently to the investigations of motion of the hypothetical

satellites of the moon as disturbed by the earth.

Delaunay lived long enough to complete only the development of the

direct solar effects. The secondary effects 3 the effect of the deviation

of the solar motion from the elliptic one, the planetary effects_ etc._

are not included in his theory. If someone in our day will decide to
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Poincar_ von Zeipel or Brown. Thesemethods permit one to remove from

the disturbing functions the periodic terms in groups_ instead of just

one term, as it is done in the classical version of the theory of

Delaunay. The recent results by Hori based on the application of

yon Zeipel's method_ permit one to conclude that the computational

process in lunar theory can by sped up considerably.

Also_ there is the tendency now not to perform the development in

terms of the meananomaly and in powers of the eccentricity 3 but to keep

the development in a more closed form by writing it in terms of the true

or of the eccentric anomalies.

The work by Brown (1937) on the stellar three-body problems

indicates the possibility of extension of Delaunay's solution to the case

of a large eccentricity and a large inclination of the orbital plane of

the satellites.

The theory of Hansen(Theoria motus, 1838, and Darlegung, 1857, 1858)

requires the analytical expansion of the disturbing function, but

otherwise the process of developing the perturbations is a purely

numerical one.

The output.are the trigonometric series in four arguments with the

purely numerical coefficients.

The method of Hansendoes not require that the first approximation

to the sola an ellipse. It permits an easy inclusion of the
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perturbations frcm every source 3 and finally 3 it permits one to treat the

high orbital inclinations.

The theory is very adaptable to the use of automatic electronic

computers. It can be used to develop the theories of satellites of outer

planets, and one might hope that some day the Hansen lunar theory will be

checked and some of the coefficients will be corrected using an electronic

computer.

Hansen splits the perturbations of the satellite into the

perturbations of the osculating orbital plane and into the perturbations

of the satellite in that plane. These two types of perturbations are not

completely independent of each other, but their mutual effects are of a

higher order and they are taken into consideration. The perturbations

in the osculating orbital plane are treated by referring the motions of

the satellite to a rotating system of coordinates rigidly connected with

that plane.

The osculating orbital plane rotates together with this system, like

a rigid body, around the instantenous positions vector of the satellites.

The system of coordinates rigidly connected with the osculating orbit

plane is termed as ideal by Hansen, because the vectors of the relative

and of the absolute velocity coincide and also because the equations of

the relative motions have the same form as in the inertial system. We

put the x and _ axes into the osculating orbit plane _. The intersection

of the x-axis with the celestial sphere, is called the "departure point"
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by Hansen. All angles in the orbit plane, like the true orbit_longitude

of the satellite v and the true orbital longitude of the perigee X are

reckoned from the departure point.

A similar system of coordinates with its departure point X' can also

be defined in the instanteneous orbital plane of the sun.

As an intermediary solution_ Hansen introduces in the osculating

orbital plane an auxilary satell!te_ moving in accordance with Kepler's

laws in an ellipse of the constant shape. This ellipse is caused to

rotate with the constant angular velocity not relative to the ideal system

of coordinates.

The elements of the ellipse and its angular velocity of rotation are

chosen in such a way that no secular or mixed terms appear in the development

of the coordinates. The position vector of the real satellite is then

determined by its deflection in time and space from the position of the

auxiliary satellite. Let r (t) be the position vector of the real satellite

at the moment t. There exists a moment z such that the position vector

r(z) of the aurilia_ry Satellite has the some direction as r(t). In other

words we have the relation

where (I + v) is a scalar factor. The quantities Vr and 6z are

interpreted as the perturbations of the radius vector and of time. The

perturbations of time are included in the mean anomaly of the auxiliary
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satellite and Kepler's equation for this satellite can be written in the

form

where _o is the anomalistic mean motion of the real satellite. The

angle _o%_ contains all the purely periodic effects in the

osculating mean anomaly and in the true orbital longitude . Thus_ all

the purely periodic angular perturbations of the real satellite in its

instanteneous orbit plane are combined into one angle: the perturbations

of t.he mean anomaly of the auxiliary satellite.

Let h -I be the areal velocity of the real satellite, Qo - -: _:

semiaxes major, QQ-the eccentricity of the auxiliary ellipse, ho-l--the

areal velocity of the auxiliary satellite_ f its true anomaly. It is of

great interest and importance that in Hansen's lunar theory the pertur-

bations in the orbital plane, v and _° %} , can be expressed in terms

of one single functions W defined by the equation

It can be shown that

a%.__k._ W -,-
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and

d_ 1 _ 1 _(1 +_) d (r) 2
= 2 am

In the process of formation of the differential equation for W it

is convenient to consider r and f as temporary constants. This is done

by replacing r and f by the symbols p and _ considered as the

functions of the temporarily "frozen" mean anomaly Co + not +noSC.

Correspondingly_ the notation W is modified to W. Considered as a

function of the time t the W-function depends now only upon the

osculating elements. Thus, the differential equation for W can be

formed using the theory of variations of astronomical constants. After

the integration Hansen's "bar operations" is performed on W-function.

This operation consists in replacing in W, T by t 3 84 by 8z, and,

consequently_ _ and _ by _ and f, W by W again.

Let _ and Y' be the angular distanc_of the departure points X and

X' from the common node of the lunar and of the solar orbit planes.

These angles are affected by the secular and by the purely periodic

perturbations, and we can set

= no - no(_ - _) t - (K + N)

_' = Ho' - no(_+_) t + (K- _)

!

where _o_ Ho _ _ and _ are constants and K and N are purely periodic.

The elements of the satellite and the secular motions of Y and Y' must

be determined in such a way that no secular or mixed terms are

present in the development of the coordinates. The mean motions -
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"-_o(_ ) and-_o(_'_1) are constants as long as only the direct solar

action is considered. The planetary effects produce small accelerations

in the mean motions of the node and of the perigee and terms containing

_-k_ ....appear. These are taken into account bywriting /_o_-_ f_to_

J_o_ instead of_o_o_,_o_. Let J be the angle between the

lunar and the solar orbit planes. Hansen makes use of the parameters

which carry all the periodic effects in the position of the lunar orbit

plane. The mean motion no _ and no _ are determined

from the differential equations for these parameters in such a way that

neither P nor K contain any secular effects.

Instead of P, (_ and K, the set of "redundant" parameters

satisfying the condition

-L

can be used. Their introduction makes the development more symmetric

and algebraic in form and leaves in the arguments only the linear

functions of time from the very start of the computational procedure.

The method of solution used by Hansen is one of sucessive

,  rox ma  on 
_(_/_ , _ K/_, are developed in powers of _ , _._and in powers of

the perturbations _ % (D ) %
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The first approximation to these quantities is obtained by integrating

the simplified differential equations, neglecting the perturbations in

the expressions for the derivatives. Then the integration is repeated

with the better values of the derivatives, until the final numerical

results are reached. The final results are the trigonometgic series for

_o%_, log (I + _ ) and the latitude of the moon in terms of the arguments:

f f @

where _is the mean anomaly of the Moon, _' the mean anomaly of the sun,
I

O the mean argument of the perigee and _ is the mean node of the

lunar orbit relative to the departure point in the solar orbit plane.

In the past, Hansen's lunar theory was considered as one difficult

to understand_ partly because of the way it was presented and partly

because of its unusual way of treating the perturbationS. It seems, that

the idea of the "disturbed time" was especially repugnant. From our

present standpoint, Hansen's theory is mathematically very clear. At

several institutes work is being done on application of the machines to

develop Hansen's theory of the "lost" satellites in the solar system and

to obtain their corrected elements and prediction of their positions in

the sky.
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_he modern lunar theory by Hill and Brown gives the expansion of the

rectangular coordinates of the moon in a rotating geocentric system. The

main problem of determining the direct solar effects is solved first, then

the corrections for several secondary effects are added. In the main

problem we take the motion of the sun to be ,_,_,$_consequently, the

plane of the ecliptic is considered as fixed.

The x-axis of the rotating system is directed toward the mean sun 3

the x and y-axes are placed into the ecliptical plane. The angular

velocity of rotation of the system is equal to observed mean motion of

the sun.

Let x, y, z be the coordinates of the moon, r its distance from the

earth, p the projection of r on the xy -plane; M the mass of the moon_

E the mass of the earth and m' the mass of the sun; and _ the observed

mean motion of the moon _ /_ the sun; e and k the constants of the
J

eccentricity and of the inclinations which appear in the expansion of

the lunar coordinates; r' ',, e _' the radius vector, the eccentricity

and the semimajor axis of the solar orbit, respectively.

If one neglects in the expansion of the lunar coordinates_ e.g., in

the expansion by Delauney, the terms depending upon the constants Of

integration e, k, _ and e' then the remaining terms depend only Upon the half of

the "argument of the variation"

l

)

i
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This shows that the group of inequalities depending only upon D can

serve as a basic intermediary solution being independent from the

constants of integration e, k, _ and e'. This is called the "variational

solution" because it contains only the argument of the variation. It

c_ be found by solving the set of differential equations which

determine thl% intermediary solution.

In Hill's theory m = n'/(n - n ) is present as a small parameter in

the differential equation of motion. The convergence in powers of this

parameter is faster in the parameter of Delauney n'/n. The basic

arguments become

!

C )

J

where c and g are the series in e2, k2, e2, e'2. The initial moments of

time to, tl, t2, ts can be omitted from the development without any harm.

They are re-introduced after the problem is solved and series expansions

for the coordinates are found.

It is easier to operate with the power series than with the trigonometric

series. For this reason Hill introduces the exponential function
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From the form of the arguments it is evident that "the coordinates Df

the moon can be represented as the power series in

and also as the power series in e, k_ _, e'. Instead of x and y_ Hill

is introducing the complex coordinates

u = x + iy, s = x - iy_ i = -I

then the disturbing function _ _of the Hill-Brown lunar theory is

developable into a power series in u, s, z, and Cm. O_becomes zero if

e' and _ are neglected. Introducing the differential operator

the classical differential equation of motion in a rotating system can

be reduced to the form

which is very convenient to obtain the solutions in the form of the

power series.

The series representing the coordinates of the moon haY_ the form



• , %, _ _ o, _\,'3r._ , ..... • _', _, °v, -_ o. _ .J..,. ....
l

where A is a function of m only, .%_ and _ are of the same

parity_ q is even in _ , S_ and it is odd in _ _'.

The factor , t

is called the characteristic of the term in the expansion and

I I I

' _.'_" 't,'

is called the order. Arranging the series

characteristics we cam write

in orders and

_._ _ -,_:_ _- :_ _, _-:_.,_) _- ....

Substituting these series into the equation of motion we deduce
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_o _ _o%o

_o
_0

C

_o _

C-t.%' )

and the set of the differential equations of the form

where

(26)

(27)

The unknowns _. %_, _ and also Aw_ _B,, have the characteristicT.

A and B have the form

q

where._[ is either 0= +2_ _4, ...or -+i_ +5_ ... They are obtained as a

result of an expansion of Eq. _) and _T) and as a result of the

algebraical operations performed on the terms having the characteristics

lower than_,.
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The terms with the characteristics zero Uo, So are to be determined

first. Then we resort to the Eqs. (_-_) and (-tT) for the successive

determination of the terms of orders I_ 2_ 3_ ... and of all admissible

characteristics inside of each order.

The solution of the zero order must have the form

Many methods were proposed for the numerical computation of the

coefficients. It seems that the original method by Hill, based on the

solution of an infinite set of the linear equations with the coefficients

rational in _, still remains a most convenient method from the

computational standpoint. The solution is greatly facilitated by the

fact that

0 (.",-, )

and _ decreases very fast as i increases.

For the moon, Hill obtained__oand So accurate up to i0 "Is, and he

found that only thirteen terms are to be kept.

The terms of the first order with the characteristics e and k are

especially important in the determination of the main parts of the motion

of the lunar perigee and node. These terms satisfy the differential

equations
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and

Evidently, _ _ and _ _ can be considered as the variations _ _ and

_o of the coordinatesk_o and _o_ and the equation written above can

be obtained by the application of the _ operator to Eq. (23') • The

variations of the coordinates can be decomposed along the tangent and

along the normal to the curve representing the solution of the zero

order. Because of the periodicity and the symmetry of this solution,

one has to expect that the variation along its normal will satisfy the

equation of the form

wl_e re

an_

_)._ -- (_ •

This is the celebrated Hillfs equation.

A lengthy computation shows that

The general solution of Hill's equation is

g-..
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f

where _ and C._ are two arbitrary constants and _& , _ are functions

of _m; _ is the root of the determinatal equation

wher e

'_J '_'_ .... _ _.._. _ • 0 "_ , -_-.._ .....

arid _'"
_ are Kronecker's deltas. This equation can be brought to the

form

for c accurate to fifteen places. Of course, this value, in fact,

represents only the main part of c. The higher order terms, depending

e2 k2 ,2 2 . will be added to co in the process ofupon , _ , e and u , . .,

computation of terms with higher characteristics. The determinants A (c)

and _ (0) have the infinite number of rows and columns. A concise, but

a descriptive_ account on convergence of infinite determinants can be

found in Whittaker and Watson "Modern Analysis".

The introduction of infinite determinants into analysis by Hill was

a daring step_ which helped him to solve a difficult problem in the lunar

theory. However_ in the practical computationsj say for the satellites

of Jupiter, the determination of Co using the process of successive
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approximations would be preferable. The fast convergent procedures were

developed by Andoyer and Brown. The forms of N, and_ suggest that

the substitution

2_ e, _, ___ .....

into Eq. (_%) can be tried after the main part of c is found. We obtain

for _ _ 5. an infinite set of the homogeneous linear equations. They

i
must be] compatible and the condition for their compatibility is already

given by Eq. (30). This system must be amended by one more equation.

In the Hill-Brown lunar theory this additional equation is

t

_o-_. -_

As a consequence of this additional condition_ the constant of the

eccentricity of the Hill-Brown lunar theory is almost twice the constant

of the Delaunay theory.

0

We rearrange the system of equations for _ _ _ into a set of

l

pairs. For each pair of unknowns _ _ _._ we can find a pair of

B

equations with the coefficients of _ j _.g dominant over the coefficients

of the remaining unknowns. The system arranged this way can be solved

by the method of successive iteration.

A similar procedure is used for the computation of terms of a higher

characteristic'K , providing that terms of the lower characteristics have
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been determined. We make the substitutions

I similary as forand arrange the linear equations for _ , _ in pairs,

the terms of the characteristic e. The

When we solve the system of equations for _; , _ by the method of

iteration, we find a difficulty, caused by the presence of a small

divisor, will arise when the expression

becomes small. Similarly_ we have the difficulty in determining _ when

becomes small. We have many such terms, of the short and of the long

periods, in all characteristics. One of them is the erection in the

group of the characteristic e, it has the form

!



- 46 -

The most troublesome term in u and s is the term _ , having the

Delaunay argument 2F - 2[ . This is a most difficult term in Hansen_ as

well as in Hill-Brown lunar theory. The test which any lunar theory,

numerical or analytical, must stand against, is the accuracy in producing.

the long-period effects. All authors_ Hansen_ Hill and Brown developed

special precedures for correcting the first approximations to the

coefficients of the critical terms. In the Hill-Bro,_n theory the

homogeneous form of the equations of motion is used for this purpose.

The main portion go of the secular motion of the node is obtained from

the differential equation for z k.Adams has developed a method for the

determination of go, which is akin to Hill's method for Co. The complete

_ e2 k2 ,2values of c and g are the multiple power series in_ _ _ _ _e and a_.

Thus writing only the first few terms,

_da. C

The determination of, say, _ _is based on the fact that the expression
L

for_& containsthe arguments which are appearing also _. The

terms with the characteristic@and having the factor _e_will appear in

the differential equation for_@as the consequence of the application

of the operators D and_D 2 toga. These terms (with the factors

omitted) must be shifted from the differential equation for %4_ to the
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differential equation for %a % • Then, similarly as before, we obtain

a set of the lines r eequations of the coefficients at _ (i = 0, i,

e, ...) in _ Q% • The compatibility of these equations leads to an

equation linear in _g_. Thus _ta can be determined. Similar

considerations are valid for

As the final result, Brown's tables give the solar parts of the true

longitude_ the latitude and of the parallax in terms of the arguments

of Delaunay's I_ I', F and D.

After the principal part of the lunar theory, the solar perturbations_

were developed_ the effects of the shapes of the earth and of the moon,

the pla_%_ry effects and the effect of the deviation of the motion of

the sun from the elliptic motion were also included. Despite all the

enormous work done by Brown_ the d'Iscrepaneies between the purely

gravitational theory and the observations still remained. In order to

remove them, Brown had to introduce a purely empirical periodic term

into the development of the lunar longitude° Already, Halley, on the

basis of the ancient eclipses, has found the existence of the secular

acceleration in the mean motion of the moon. Laplace attributed it to

the variability of the eccentricity of the earth's orbit_ which is

caused by the planetary perturbations. This value for the acceleration

was confirmed by Plana, Damoiseau and Hansen_ but Adams found that the

purely gravitational acceleration is only nearly a half of the value

obtained by Laplace.
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The investigations by Fotheringham_ de Sitter and Spenser-Jones

point out the irregularities in the rotation of the earth as a cause of

the d_$crepancy between observed and the computed positions of the

moon. The tidal friction_ especially in the enclosed and narrow seas_

and the variability of the moments of inertia of the earth cause the

difference between the dynamical time_ in the equations of motion_ and

the mean solar time to change.

The gravitational theory of the moon is referred to the dynamical

time_ but the observations are referred to the mean solar time. In order
I

%o account for this difference and to bring the ephemeris of the moon

±nto agreement with the ephemeris of the sun_ the empirical term is

removed from the mean longitude of the moon as it is given in Brown's

table and the correction

II #; W

is introduced instead. The difference between the dynamical time and

the mean solar time is

T = + 24 s.349 + 72s.318T + 29 s.9_0T a + 1.82144...B

This correction for the irregularities of the earth's rotation includes

the effect of the tidal friction as well as the effect of the

variability of the moments of inertia of the earth. This last effect

is carried by B, which is called "the fluctuation of the moon in the

longitude" and represents the effect of the variability of moments of

inertia on the longitude of the moon. A complete discussion of the
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subject can be found in the book by Munk and MacDonald (1960).

Recently W. Eckert from Watson Computing Laboratory undertook the

revision of the Hill-Brown lunar theory. He _orrected th@ humerical

values of the coefficients as well as the values of the original

elements. _With these important corrections of the main problem, we have

a highly accurate lunar theory which can serve as a solid foundation

for the determination of the secondary effects as of the planetary

@ffects and of the effects caused by the fugures of the earth and the

moon. The direct planetary periodic perturbation in the longitude is

produced by Venus. It has about 17" in the amplitude. The upper limit

for the coefficients in the perturbations caused by the figure of the

earth is about 9". Most significant are the terms having as the

arguments the longitude of the node and the mean longitude of the moon.
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Artificial Satellites.

The theory of artificial satellites constitutes now a special

chapter in celestial mechanics. We shall consider here the purely

gravitational effects which can be treated using the classical means.

The main perturbative effect in the motion of artificial satellites is

caused by the presence of the equatorial bulge. If this bulge were not

present and the earth were a sphere composed of homogeneous layers 3

then the motion of a satellite wpuld be purely elliptic. The force

function would be of the form

U = -
r

where r is the distance of the satellite from the center of the earth.

If the bulge is present, then the force function becomes

where _ is the position vector of the particle of the earth from its

center of mass G and r is the position vector of the satellite relative

to G. The integral is taken over the volume of the earth. If we

assume the axial symmetry of the earth, then U can be developed into a

series of Legehdre polynomials (zonal harmonics) and we have
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where z is the distance of the satellite from the equatorial plane.

Because of the perturbative action of the bulge, the orbit is not a

fixed ellipse and the elements become the functions of time. Of all the

perturbative effects represented in Eq. (31), the dipole term

is the most significant one. The problem given by the simplified

disturbing function

U = P + _J2 z (32)

constitutes the so-called main problem in the theory of artificial

satellites. The remaining pertnrbative effects constitute small

contributions to the main problem and at the present time can be treated

differentially. The most elegant purely analytical solution of the

artificial satellite problem is given by Brower (1959) and his school.

The problem is solved using von-Zeip_l's method of elimination of shbrt-

period terms.

In a previous section, we mentioned the canonical elements of

Delaunay: L_ G_ H_ l_ g_ h. Brouwer makes use of them and writes the

equations for variation of elements in the form

dL 3F dl 8F

dt 8l ' dt 8L
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dG _F dg _F

dt _g ' dt _G

dH SF dh SF

at _-h ' dt -_

where the Hamiltonian F is in Brouwer's notations

= _ _(. -+i 3 H_1a _
F _ + j_L6 _ 2 2 G2

+

3 3 H2 as 2f)-_+(2 2 cos(2g+

where f is the true anomaly of the satellite.

In fact F is the force function [Eq. (32)] expressed in terms of

the elements of Delaunay. By applying a properly chosen canonical

trans format ion

(L, G, H, I, g, h) _ (L', G', H', i', g', h')

L ='_-_'_ , G ="'_ , H ="Th

_S _
i' =,._ , g,_ , h' :"T_

S = L'I + G'g +Hh + Si (L', G', H, I, g)+

+ s_ (L' G' E, z, g) + o(_ _)
2

Brouwer eliminates all the short-period term from the Hamiltonian,

thus reducing it to the new form

2L L'SG 's 2 G,2
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L,iO 32 G,5 1 5 G '-_ + +

÷ _8 o,e (,1 - 6 - +9o,_ _ J -

_5 L'_ _ _ 9_
52 G'7 (I - 2 G'e 7 --G,4 d

+ 15 cos 2g'
G'

An additional canonical transformation removes the long-period terms

and we arrive at a Hamiltonian of the form

F** = F:"_(L '', G", H)

which does not contain the periodic terms at all. With the accuracy up

to. k22_ the Hamiltonian F** has exactly the same form as the purely

secular part in F* Only L' G'• , are replaced by L" and G".

From the new canonical equations

dL" 8F** dl" 5F**

-- = + 81" = O, - 3L"dt dt

" aF** _ aF**
-- = + = O_ = -_t _ dt

dH dh" 3F**
=* _h'-'* O, -- =d--t • = dt 8H

it is evident that L" G" and H are constants and that the elements

i", g" and h" are linear functions of time• These elements are the
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meanelements of Brouwer's theory. The Original disturbing function

F does not contain the long-period term. However, this term appears in

the transformed Hamiltonian F_, but with a very small factor k22. Thus,

the order of magnitude of the long-period term in F* is higher than the

order of the corresponding purely secular term. This is exactly the

reason why the artificial satellite problem is solvable in terms of

Fourier series. In the lunar problem both terms can be of the same

order, and consequently 3 solution in the form of a trigonometric series

will be not always possible.

The additional corrections as caused by the presence of the third,

fourth and fifth harmonics in the external potential of the earth are

added to the main solution in a differential way. All these harmonics

will introduce someadditional long-period terms in the elements, but

only the fourth harmonic will contribute to the meanmotions of the

basic arguments l", g" and h". Final expressions of these meanmotions

are given with the accuracy up to ka2. Thus, the solution for the

disturbed elements is obtainable in the form of asymptotic series in

the small parameter ka. The periodic terms proportional to ka are

written out explicitly. They consist of two classes: the short-

period terms containing the meananomaly in the arguments and the longo

period terms_ containing only the argument of perigee. The two final

arguments l" and g", the meananomaly and the argument of the perigee

in the notation of Delaunay3 are linear with respect to time. Thus_

the main effect of the bulge consists in causing the line of apsides and

the orbital plane to rotate.
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For inclinations smaller than _ 63.4 the perigee rotates

counterclockwise in the orbital plane, assuming the direct motion of

the satellite. For inclinations larger than _ 63.4 the perigee rotates

clockwise. The plane itself rotates clockwise for inclinations smaller

than _ 90 ° and it rotates counterclockwise for inclination larger than

N 90 o. In the closest neighborhood of the critical inclination 63.4

this theory is not applicable.

Kozai (1962) amended Brouwer's solution by inclusion of the

periodic terms of order k22. The influence of higher-order zonal

harmonics was considered by Giacaglia (1964) and by Garfinkel and

McAllister (1964). The problem of inclusion of the tesseral harmonics

in the external potential of the earth into Brouwer theory was treated

in details by Garfinkel (1965). The general terms in the Hamiltonian

is

J_j_

F ,_ - rm+l Pm (sin@) cos k (_ -_t +_)

designates the angular velocity of the earth's rotation_ _ the

declination 3 _ the right ascension of the satellite 3 J and _ are
_,_ "_

constant. The expansion of F was obtained in terms of the canonical

elements of Delaunay. The long periodic terms in this development are

of primary importance, especially in the state of resonance with the

earth rotations.

The theories of artificial satellites by Sterne (1958)_ Garfinkel

(1958) and Vinti (1959) based on the use of separable Hamiltonians
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deserve to be mentioned_ as well as the theory of Kozai (1999) based

on the use of Lagrangian equations of variation of the elliptic

eleme nt s.

A different approach to the problem was taken by Musen (1959_

1961). He'developed a semianalytical theory giving the expansions of

Hansen's coordinates into Fourier series with purely numerical

coefficients. The basic ideas of Hansen's lunar theory serve the

foundation of Mnsen's theory of artificial satellite: The fundamental

idea consists in the introduction of a fictitious auxiliary satellite

which moves on the rotating ellipse of constant shape in accordance

with Kepler's laws. The position of the real satellite is determined

by its deviation from the auxiliary satellite in time and space. The

perturbations affecting the satellite are split into the perturbations

in the orbit plane and into the perturbations of the orbit plane. The

first type of perturbation_ are the perturbations of the

position vector _ and the perturbations of time noSz_ which we met

already in the exposition of Hansen's lunar theory. They are

determined by a single function W. The eccentric anomaly E of the

auxiliary satellite is taken as the independent variable. Let _ be

the disturbing function causing the deviation of the satellite from +h_

purely elliptic motion. The basic system of the differential equations

determining the perturbations in the orbit plane has the form



where
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dW N Ar 3a°O 8ao_ S_= _+MA +-

dE 8r 8E J1 - eo2

h 2

(I - eo2) M = _ [- 2 + 2eocos E + 2 cos (F - E)

-eo cos (F - 2E) - e0 cos F]

1 [2eo 2 2eocosE+ 1+---_

+ eo 2 cos (F + E) + (2 - eo2).
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i 2
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h 2
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1
+ eo.sin (F - 2E)] + 1 +-----_

• [- 2eo sin E - (2 - eo2) sin (F - E)

+ eo2 sin (F + E)] + eo sin E

- { eo 2 sin 2E

A = _ + , _ .
/i - eo_

p . _W
S =

ao 3F ( W + i +_- eo sin F

dE a 0 ao _Pl - eo 2
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The perturbations of the radius vector are obtained from the equation

ho + 2 ho . I
w = - I-_- _- i+_

The eccentric anomaly F represents a special device peculiar to Hansen

theory. It is introduced to facilitate the integration_ as well as to

keep the elliptic motion of the auxiliary satellite separated from the

.%

perturbations. By h we designated the osculating areal velocity_ by

--%

ho its counterpart associated with the auxiliary ellipse. All

elements having the subscript zero are also associated with the

auxiliary satellite. After the integration is completed F is replaced

by E again. This replacement is represented by the "bar"-operator.

The symbol_,_represents the speed of rotation of the auxiliary ellipse

in its orbit plane. The purely periodic perturbations of the orbit

plane are determined by four Euler paramete_X1 3 k2_ ks_ k4. The

effects proportional to E are carried by the three basic arguments E

by the mean node

(_) 8o - (_ + _) (E - Eo)

and by the mean argument of the perigee

The constants y_ _ _ appearing in the mean motion of the basic arguments

are determined in such a way that no purely secular terms appear in

no6z and in X1 3 Xe_ Xs, 14- As a consequence 3 the purely secular

terms do not appear in the coordinates either.

I
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The theory described takes a slightly simpler form if the true

orbital longitude of the satellite is taken as the independent

variable instead of E.

The position vector of the satellite is determined by the

equat ion s

+ [ ]= ao/_- e sin E
@

E - eo sin E = Mo + no(t - to) + noSz

where As designates a rotation matrix about the z-axis and F is the

qu_ternion-type matrix, rational in parameters kl, k2, ks_ k4. The

main difficulty in understanding Hansen-type theory lies in the fact

that it is not expressed in terms of the standard osculating elements.

Howev_r_ with some efforts it is quite lucid. Its strong positive

point is that it permits an easy inclusion of the perturbative effects

from different sources, such as the influence of the tesseral

harmonics, leaving the decision about the relative importance of terms

totally to the automatic computer. It is important that care should

be taken about the proper numerical accuracy of the geodetic

parameters of the earth, because the coefficients of long-period terms

are very sensitive to any unnecessary cutting of the numerical values

@

of Ja, Js, J4_ ..., etc.

For the orbital inclination in the neighborhood of 63°.4 the mean

motion of the argument of the perigee becomes extremely small. The

presence of small divisors, however, will cause the terms with the

i
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argument g" of Brouwer's theory to become very large in the expressions

for the perturbations of the elements. This effect is termed a

resonance effect at this particular critical inclination.

Other resonance effects can be caused by tesseral harmonics as

well as by the lunar and solar actions. If the period of revolution

of the satellite is nearly 24 hours 3 then the tesseral harmonic

associated with the el!ipticity of the earth will cause a resonance.

Such a satellite nearly follows the earth in its rotation. It can

oscillate over two stable locations over the Indian Ocean and Eastern

Pacific_ or it can drift away from it original position over the

earth. In the first approximation the resonance at 63_.4 resembles a

pendulumj i.e., the critical argument g can oscillate between two

limits_ or to change progressively with time, or to approach a limit

asymptotically. The perturbations in the elements are expressible in

terms of elliptic integrals of the first and second kind (Hori, 1960).

Similar conditions do exist for any type of resonance o Thus the

importance of resonance in treating the stability of the orbits is

evident. In higher approximations_ however3 the affinity with the

pendulum problem is lost.

The standard technique of developing the perturbations in powers

of some small parameter c and in Fourier series fails in the case of

a resonance. If the resonant conditions do exist_ the development of

the perturbations must proceed in fractional powers of the small
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l

parameter ¢, normally in powers of e_. The lunar and the solar

perturbations can also be of considerable influence on the motion of a

close satellite. If the resonance conditions appear, then the lifetime

of the satellite can be shortened or prolonged considerably under the

influence of the moon_ providing the launch time is chosen properly.

The normal way to treat the lunar and solar effects in the motion

of a close satellite is based on the elimination of all short-period

effects from the corresponding disturbing function. This is equivalent

to averaging the disturbing function over the orbit of the artificial

satellite. For more distant satellites, this simplified technique is

not applicablej because their motion resembles more the motion of a

cQmet of a planet than the motion of a satellite in the strict sense

of this word.
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